Skip to contents

Prediction a grid for a specific year

Usage

get_prediction_grid(year, x, subsel = NULL, varsbyyr = NULL, vars = NULL)

Arguments

year

Numeric string. The years the data is available for.

x

Data.frame. The data.frame of the covariate data going into the model.

subsel

Default = NULL.

varsbyyr

Character string. The name of the variables that vary by year.

vars

Character string. The name of the variables that do not vary by year.

Value

list of data by year

Examples

dat <- data.frame(
          lon = rnorm(n = 10, mean = 170, sd = 10),
          lat = rnorm(n = 10, mean = 170, sd = 10),
          sx = rnorm(n = 10, mean = 60, sd = 10),
          sy = rnorm(n = 10, mean = 170, sd = 10),
          covA = rnorm(n = 10, mean = 3, sd = 10),
          covB2019 = rnorm(n = 10, mean = 20, sd = 10),
          covB2020 = rnorm(n = 10, mean = 20, sd = 10),
          covB2021 = rnorm(n = 10, mean = 20, sd = 10),
          covB2022 = rnorm(n = 10, mean = 20, sd = 10),
          EFFORT = rnorm(n = 10, mean = 20, sd = 10))

vars <- "covA"
varsbyyr <- "covB"
YEARS <- 2019:2022
pg <- lapply(YEARS,
       FUN = get_prediction_grid,
       x = dat,
       vars = vars,
       varsbyyr = varsbyyr)
names(pg) <- YEARS
pg
#> $`2019`
#>         lon      lat       sx       sy       covA      covB EFFORT
#> 1  164.2112 167.2785 47.29487 171.2430 -12.625184 32.037678      1
#> 2  187.6379 145.5332 65.42142 160.0157   3.710534  5.687292      1
#> 3  171.3299 170.6549 60.75106 182.3339  -3.395348 33.829109      1
#> 4  173.7650 159.0149 65.58514 173.4042  -5.451957 20.031259      1
#> 5  181.3871 163.6682 64.15406 165.2730   9.752447 19.221132      1
#> 6  182.4126 149.3635 45.47700 177.0875  14.533758 24.414282      1
#> 7  176.1209 196.4893 69.41206 154.7104 -13.865047 21.289229      1
#> 8  165.7062 158.4660 56.61064 172.3743  -6.028149 11.697857      1
#> 9  183.6046 166.5936 59.24426 156.8719  16.176337 14.964071      1
#> 10 169.2914 177.8636 60.40204 177.4703  14.001897  8.063588      1
#> 
#> $`2020`
#>         lon      lat       sx       sy       covA      covB EFFORT
#> 1  164.2112 167.2785 47.29487 171.2430 -12.625184 12.482767      1
#> 2  187.6379 145.5332 65.42142 160.0157   3.710534 34.558414      1
#> 3  171.3299 170.6549 60.75106 182.3339  -3.395348 11.713965      1
#> 4  173.7650 159.0149 65.58514 173.4042  -5.451957 22.897745      1
#> 5  181.3871 163.6682 64.15406 165.2730   9.752447 15.199465      1
#> 6  182.4126 149.3635 45.47700 177.0875  14.533758 13.951706      1
#> 7  176.1209 196.4893 69.41206 154.7104 -13.865047 34.601102      1
#> 8  165.7062 158.4660 56.61064 172.3743  -6.028149 21.496794      1
#> 9  183.6046 166.5936 59.24426 156.8719  16.176337  5.666789      1
#> 10 169.2914 177.8636 60.40204 177.4703  14.001897 19.896967      1
#> 
#> $`2021`
#>         lon      lat       sx       sy       covA      covB EFFORT
#> 1  164.2112 167.2785 47.29487 171.2430 -12.625184 17.877640      1
#> 2  187.6379 145.5332 65.42142 160.0157   3.710534 10.936598      1
#> 3  171.3299 170.6549 60.75106 182.3339  -3.395348 -1.021525      1
#> 4  173.7650 159.0149 65.58514 173.4042  -5.451957 38.933605      1
#> 5  181.3871 163.6682 64.15406 165.2730   9.752447 10.318742      1
#> 6  182.4126 149.3635 45.47700 177.0875  14.533758 18.973970      1
#> 7  176.1209 196.4893 69.41206 154.7104 -13.865047 22.399596      1
#> 8  165.7062 158.4660 56.61064 172.3743  -6.028149 20.608989      1
#> 9  183.6046 166.5936 59.24426 156.8719  16.176337 -1.775760      1
#> 10 169.2914 177.8636 60.40204 177.4703  14.001897 18.821399      1
#> 
#> $`2022`
#>         lon      lat       sx       sy       covA     covB EFFORT
#> 1  164.2112 167.2785 47.29487 171.2430 -12.625184 21.12295      1
#> 2  187.6379 145.5332 65.42142 160.0157   3.710534 20.07886      1
#> 3  171.3299 170.6549 60.75106 182.3339  -3.395348 38.77744      1
#> 4  173.7650 159.0149 65.58514 173.4042  -5.451957 41.58757      1
#> 5  181.3871 163.6682 64.15406 165.2730   9.752447 27.09715      1
#> 6  182.4126 149.3635 45.47700 177.0875  14.533758 27.66983      1
#> 7  176.1209 196.4893 69.41206 154.7104 -13.865047 16.91789      1
#> 8  165.7062 158.4660 56.61064 172.3743  -6.028149 30.12002      1
#> 9  183.6046 166.5936 59.24426 156.8719  16.176337 10.80948      1
#> 10 169.2914 177.8636 60.40204 177.4703  14.001897 25.63380      1
#>