Package index
-
as.data.frame(<tmbfit>) - Convert object of class tmbfit to data.frame. Calls
extract_samples -
as.tmbfit() - Construtor for tmbfit objects
-
benchmark_metrics() - Calculate gradient timings on a model for different metrics
-
check_snuts_diagnostics() - Check NUTS diagnostics of a fitted model
-
.get_Q() - Get the joint precision matrix Q from an optimized TMB or RTMB obj.
-
.get_Qinv() - Get the joint covariance Sigma from an optimized TMB or RTMB obj without random effects.
-
.get_inits() - Get a single initial value vector in untransformed model space
-
.make_unique_names() - Function to take a character vector of parameter names and force them to be unique by appending numbers in square brackets as needed
-
.print.mat.stats() - Print matrix stats
-
.rotate_posterior() - Update algorithm for mass matrix.
-
extract_sampler_params() - Extract sampler parameters from a fit.
-
extract_samples() - Extract posterior samples from a model fit.
-
get_post() - Extract posterior samples from a tmbfit object
-
is.tmbfit() - Check object of class tmbfit
-
launch_shinytmb() - Launch shinystan for a TMB fit.
-
pairs(<tmbfit>) - Plot pairwise parameter posteriors and optionally the MLE points and confidence ellipses.
-
plot(<tmbfit>) - Plot object of class tmbfit
-
plot_Q() - Make an image plot showing the correlation (lower triangle) and sparsity (upper triangle).
-
plot_marginals() - Plot marginal distributions for a fitted model
-
plot_sampler_params() - Plot adaptation metrics for a fitted model.
-
plot_uncertainties() - Plot MLE vs MCMC marginal standard deviations for each parameter
-
print(<tmbfit>) - Print summary of tmbfit object
-
sample_inits() - Function to generate random initial values from a previous fit using SparseNUTS
-
sample_snuts() - NUTS sampling for TMB models using a sparse metric (BETA).
-
summary(<tmbfit>) - Print summary of object of class tmbfit
-
tmbfit() - Constructor for the "tmbfit" class