Skip to contents

All functions

as.data.frame(<tmbfit>)
Convert object of class tmbfit to data.frame. Calls extract_samples
as.tmbfit()
Construtor for tmbfit objects
benchmark_metrics()
Calculate gradient timings on a model for different metrics
check_snuts_diagnostics()
Check NUTS diagnostics of a fitted model
.get_Q()
Get the joint precision matrix Q from an optimized TMB or RTMB obj.
.get_Qinv()
Get the joint covariance Sigma from an optimized TMB or RTMB obj without random effects.
.get_inits()
Get a single initial value vector in untransformed model space
.make_unique_names()
Function to take a character vector of parameter names and force them to be unique by appending numbers in square brackets as needed
.print.mat.stats()
Print matrix stats
.rotate_posterior()
Update algorithm for mass matrix.
extract_sampler_params()
Extract sampler parameters from a fit.
extract_samples()
Extract posterior samples from a model fit.
get_post()
Extract posterior samples from a tmbfit object
is.tmbfit()
Check object of class tmbfit
launch_shinytmb()
Launch shinystan for a TMB fit.
pairs(<tmbfit>)
Plot pairwise parameter posteriors and optionally the MLE points and confidence ellipses.
plot(<tmbfit>)
Plot object of class tmbfit
plot_Q()
Make an image plot showing the correlation (lower triangle) and sparsity (upper triangle).
plot_marginals()
Plot marginal distributions for a fitted model
plot_sampler_params()
Plot adaptation metrics for a fitted model.
plot_uncertainties()
Plot MLE vs MCMC marginal standard deviations for each parameter
print(<tmbfit>)
Print summary of tmbfit object
sample_inits()
Function to generate random initial values from a previous fit using SparseNUTS
sample_snuts()
NUTS sampling for TMB models using a sparse metric (BETA).
summary(<tmbfit>)
Print summary of object of class tmbfit
tmbfit()
Constructor for the "tmbfit" class